
Boundary conditions for scaled random matrix ensembles in the bulk of the spectrum

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 12725

(http://iopscience.iop.org/1751-8121/40/42/S16)

Download details:

IP Address: 171.66.16.146

The article was downloaded on 03/06/2010 at 06:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/42
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 12725–12740 doi:10.1088/1751-8113/40/42/S16

Boundary conditions for scaled random matrix
ensembles in the bulk of the spectrum

A V Kitaev1 and N S Witte2

1 Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191011, Russia
2 Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia

E-mail: kitaev@pdmi.ras.ru and n.witte@ms.unimelb.edu.au

Received 15 January 2007, in final form 18 May 2007
Published 2 October 2007
Online at stacks.iop.org/JPhysA/40/12725

Abstract
A spectral average which generalizes the local spacing distribution of the
eigenvalues of random N ×N Hermitian matrices in the bulk of their spectrum
as N → ∞ is known to be a τ -function of the fifth Painlevé system. This τ -
function, τ(s), has generic parameters and is transcendental but is characterized
by particular boundary conditions about the singular point s = 0, which we
determine here. When the average reduces to the local spacing distribution we
find that the τ -function is of the separatrix, or partially truncated type.

PACS numbers: 02.10.Ab, 02.30.Gp, 02.30.Hq, 02.30.Ik, 02.30.Ks, 02.60.Lj
Mathematics Subject Classification: 05E35, 39A05, 37F10, 33C45, 34M55

1. Motivations

Recent studies [13–15] have revealed that a generalized spectral average for the universality
classes of scaled random Hermitian matrix ensembles—the bulk, hard edge and soft edge
classes for β = 2—is determined by general transcendental solutions of the Painlevé
equations PV, PIII and PII respectively. These works unified earlier studies [19, 23–25] in
the sense that this average includes local eigenvalue spacing distributions and moments of the
characteristic polynomials as special cases, and extended them in that the parameter sets of the
Painlevé equations were exhausted. As a consequence of this identification the logarithmic
derivatives of the spectral averages are Jimbo–Miwa–Okamoto σ -functions satisfying second-
order second-degree ordinary differential equations. It was noted in the first mentioned works
that while identifying the precise parameters of the Painlevé transcendents involved, the
algebraic approach employed could not uniquely specify adequately the boundary conditions
that the particular solutions to the differential equations should satisfy. It is the purpose of
this paper to rectify this for the bulk scaling case and completely determine the boundary
conditions for the differential equations of the σ -form.

1751-8113/07/4212725+16$30.00 © 2007 IOP Publishing Ltd Printed in the UK 12725
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The plan of our work is as follows. In section 2 we review the isomonodromic formulation
of PVI for generic values of the parameters, give a specific parametrization of its monodromy
matrices and the local expansion of the τ -function about the fixed singularity t = 0. In section 3
we give the corresponding expansion for a generalized spectral average of the circular unitary
ensemble, the spectrum singularity ensemble and identify its monodromy data by comparison
with the previous section. In section 4 we review the necessary isomonodromic formulation
for PV in a parallel manner to the treatment of PVI in section 2. We take the bulk scaling
limit of our spectrum singularity average via a formal argument in section 5 and identify the
resulting monodromy data applying in this case. We show that these data are consistent with
the rigourous theory of the limit transition from PVI to PV as developed in Kitaev [20]. We wish
to advise the reader that we re-use the same symbols in the context of the monodromy theory
of PVI as for that of PV where there is no risk of confusion in order not to burden the notation
unnecessarily. Where both are discussed together then we make a notational distinction.

2. Isomonodromy deformation formulation for PVI

Following the conventions and notations of [18, 20] we consider the Lax pair of linear
2 × 2 matrix ODEs for �(λ; t) with four regular singularities in the λ-plane denoted by
ν ∈ {0, t, 1,∞}:

d

dλ
� =

(
A0

λ
+

A1

λ − 1
+

At

λ − t

)
�,

d

dt
� = − At

λ − t
�. (2.1)

We adopt the convention that the residue matrices Aν satisfy

A0 + At + A1 = −A∞ = −θ∞
2

σ3, σ3 :=
(

1 0
0 −1

)
, θ∞ ∈ C\Z, (2.2)

and the constraints tr Aν = 0, det Aν = − 1
4θ2

ν , ν ∈ {0, t, 1}, defining the formal exponents of
monodromy θν . The τ -function for PVI is defined as

d

dt
log τ = Tr

(
A0

t
+

A1

t − 1

)
At, (2.3)

and the σ -function as

ζ(t) = t (t − 1)
d

dt
log τ +

1

4

(
θ2
t − θ2

∞
)
t − 1

8

(
θ2
t + θ2

0 − θ2
∞ − θ2

1

)
, (2.4)

which satisfies the second-order second-degree differential equation

d

dt
ζ

(
t (t − 1)

d2

dt2
ζ

)2

+

[
2

d

dt
ζ

(
t

d

dt
ζ − ζ

)
−

(
d

dt
ζ

)2

− 1

16

(
θ2
t − θ2

∞
)(

θ2
0 − θ2

1

)]2

=
(

d

dt
ζ +

1

4
(θt + θ∞)2

)(
d

dt
ζ +

1

4
(θt − θ∞)2

)

×
(

d

dt
ζ +

1

4
(θ0 + θ1)

2

) (
d

dt
ζ +

1

4
(θ0 − θ1)

2

)
. (2.5)

Furthermore, we suppose that the matrices Aν, ν ∈ {0, t, 1} are diagonalizable, i.e. that there
exist invertible matrices Rν ∈ SL(2, C) such that R−1

ν AνRν = 1
2θνσ3, θν ∈ C\Z. In the

neighbourhood of a regular singularity, �(λ) can be expanded as

�(λ) =
∞∑

m=0

�mν(λ − ν)m+ θν
2 σ3Cν, (2.6)



Boundary conditions for scaled random matrix ensembles 12727

·0 · t · 1 ·∞

0

Figure 1. Monodromy representation of the fundamental group for C\{0, t, 1,∞}.

for ν ∈ {0, t, 1} and for λ = ∞ in the form

�(λ) =
(

I +
∞∑

m=1

�m∞λ−m

)
λ− θ∞

2 σ3 . (2.7)

The monodromy matrices Mν(ν ∈ {0, t, 1,∞}) are defined by �|ν+δ e2π i = �|ν+δ Mν , and are
given in terms of the connection matrices Cν by

Mν = C−1
ν eπ iθνσ3Cν, C∞ = I. (2.8)

They satisfy the cyclic relation which in our conventions is taken to be

M∞M1MtM0 = I, (2.9)

and corresponds to the particular basis of loops given in figure 1
The monodromy data MVI := {θν, Cν,Mν |ν = 0, t, 1,∞} are preserved under

deformations with respect to t . The invariants of the monodromy data are defined to be
pµ = 2 cos πθµ := Tr Mµ,µ ∈ {0, t, 1,∞} and pµν = 2 cos πσµν := Tr MµMν,µ, ν ∈
{0, t, 1}.

Now we are in a position to present the details of a parametrization of the monodromy
matrices and the expansions of the τ -function about the singular points 0, 1,∞ given in
Jimbo’s study [18]. In this work, Jimbo states the following conditions under which his results
apply:

θ0, θt , θ1, θ∞ /∈ Z, (2.10)

0 < �(σ0t ) < 1, (2.11)

θ0 ± θt ± σ0t , θ∞ ± θ1 ± σ0t /∈ 2Z, (2.12)

and we call these generic conditions. In our application the non-resonant condition (2.10) will
be adhered to; however, (2.12) can be relaxed in a meaningful way and we conjecture that the
results of Jimbo still hold under suitable limiting procedures where the left-hand sides → 2Z.

When σ0t �= 0, the parametrization of the monodromy matrices employed by Jimbo is

M∞ =
(

eπ iθ∞ 0
0 e−π iθ∞

)
, (2.13)

M1 = 1

i sin πθ∞

×
(

cos πσ − e−π iθ∞ cos πθ1 −2r e−π iθ∞ sin π
2 (θ∞ + θ1 + σ) sin π

2 (θ∞ + θ1 − σ)

2r−1eπ iθ∞ sin π
2 (θ∞ − θ1 + σ) sin π

2 (θ∞ − θ1 − σ) − cos πσ + eπ iθ∞ cos πθ1

)
,

(2.14)
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DMtD
−1 = 1

i sin πσ

×
(

eπ iσ cos πθt − cos πθ0 −2seπ iσ sin π

2 (θ0 + θt − σ) sin π

2 (θ0 − θt + σ)

2s−1e−π iσ sin π

2 (θ0 + θt + σ) sin π

2 (θ0 − θt − σ) −e−π iσ cos πθt + cos πθ0

)
,

(2.15)

DM0D
−1 = 1

i sin πσ

×
(

eπ iσ cos πθ0 − cos πθt 2s sin π
2 (θ0 + θt − σ) sin π

2 (θ0 − θt + σ)

−2s−1 sin π
2 (θ0 − θt − σ) sin π

2 (θ0 + θt + σ) −e−π iσ cos πθ0 + cos πθt

)
,

(2.16)

where

D =
(

sin π
2 (θ∞ − θ1 − σ) r sin π

2 (θ∞ + θ1 + σ)

r−1 sin π
2 (θ∞ − θ1 + σ) sin π

2 (θ∞ + θ1 − σ)

)
, (2.17)

with the short-hand notation σ = σ0t , s = s0t . The quantity s0t together with σ0t defines a
unique solution to the PVI σ -form (2.5). The other parameter r is an arbitrary nonzero complex
constant and is a free parameter in the monodromy matrices but does not appear in the local
expansions.

A key formula is the following connection relation which relates s0t , σ0t to σt1 and σ01.

Lemma 2.1 [5, 18]. Under the above generic conditions (2.10), (2.11), (2.12) and notations

4s±1 sin
π

2
(θ0 + θt ∓ σ0t ) sin

π

2
(θ0 − θt ± σ0t )

× sin
π

2
(θ∞ + θ1 ∓ σ0t ) sin

π

2
(θ∞ − θ1 ± σ0t )

= e±π iσ0t (±i sin πσ0t cos πσt1 − cos πθt cos πθ∞ − cos πθ0 cos πθ1)

± i sin πσ0t cos πσ01 + cos πθt cos πθ1 + cos πθ∞ cos πθ0. (2.18)

A consequence of this relation is a constraint on the monodromy invariants which is an
algebraic variety defining a sub-manifold, the monodromy manifold, of C

3.

Lemma 2.2 [18]. The monodromy manifold for PVI is given by

M(p0t , pt1, p01) = p0tpt1p01 + p2
0t + p2

t1 + p2
01

− (p0pt + p1p∞)p0t − (ptp1 + p0p∞)pt1 − (p0p1 + ptp∞)p01

+ p2
0 + p2

t + p2
1 + p2

∞ + p0ptp1p∞ − 4 = 0. (2.19)

Theorem 2.1 [18]. Under conditions (2.10)–(2.12), we have the asymptotic expansion of the
τ -function as t → 0 in the domain {t ∈ C|0 < |t | < ε, |arg(t)| < φ} for all ε > 0 and any
φ > 0:

τ(t) ∼ const · t (σ
2−θ2

0 −θ2
t )/4

{
1 +

(
θ2

0 − θ2
t − σ 2

)(
θ2
∞ − θ2

1 − σ 2
)

8σ 2
t

− ŝ

[
θ2

0 − (θt − σ)2
][

θ2
∞ − (θ1 − σ)2

]
16σ 2(1 + σ)2

t1+σ

− ŝ−1

[
θ2

0 − (θt + σ)2
][

θ2
∞ − (θ1 + σ)2

]
16σ 2(1 − σ)2

t1−σ + O(|t |2(1−�(σ )))

}
, (2.20)
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where σ �= 0 and ŝ are related to s through

ŝ = s
2(1 − σ)

(
1 + 1

2 (θ0 + θt + σ)
)


(
1 + 1

2 (−θ0 + θt + σ)
)

2(1 + σ)
(
1 + 1

2 (θ0 + θt − σ)
)


(
1 + 1

2 (−θ0 + θt − σ)
)

× 
(
1 + 1

2 (θ∞ + θ1 + σ)
)


(
1 + 1

2 (−θ∞ + θ1 + σ)
)


(
1 + 1

2 (θ∞ + θ1 − σ)
)


(
1 + 1

2 (−θ∞ + θ1 − σ)
) , (2.21)

and we employ the short-hand notation s = s0t , ŝ = ŝ0t and σ = σ0t . The monodromy data
defining a unique solution to the sixth Painlevé system are {σ0t , s0t }.

3. The spectrum singularity ensemble

A fundamental ensemble in random matrix theory is the ensemble of finite rank (rank = N )
random unitary matrices—the Dyson circular unitary ensemble (CUE). Consider a member of
this ensemble U with eigenvalues z1 = eiθl , . . . , zN = eiθN . Then the eigenvalue probability
density function for the ensemble is the Haar measure for U(N):

pN(θ1, . . . , θN) := 1

(2π)NN !

∏
1�j<k�N

|zj − zk|2. (3.1)

A generalization of this ensemble, referred to as the spectrum singularity ensemble (SSE) [15],
has an eigenvalue probability density function containing additional algebraic singularities at
z = 0,−1,−1/t , where t = eiφ, φ ∈ [0, 2π). In the log-gas picture of the CUE the
eigenvalues of a random unitary matrix are mobile unit charges subject to a pairwise mutual
logarithmic repulsion and in the SSE these charges are subject to additional external fields—
the logarithmic electrostatic potential of impurity charges located at the ends of the sector, at
z = −1,−1/t with charges ω1, µ respectively, and an external electric field of strength ω2.
The generalized spectral average we wish to investigate is the partition function of such an
electrostatic system, and is given by the N-dimensional integral [15]

AN(t;ω1, ω2, µ; ξ ∗) := 1

N !

(∫ π

−π

−ξ ∗
∫ π

π−φ

)
dθ1

2π
· · ·

(∫ π

−π

−ξ ∗
∫ π

π−φ

)
dθN

2π

×
N∏

l=1

z
−iω2
l |1 + zl|2ω1 |1 + tzl|2µ

∏
1�j<k�N

|zj − zk|2, (3.2)

where ξ ∗ ∈ C and the parameters ω1, ω2, µ ∈ C, ω = ω1 + iω2, are restricted with
�(2ω1),�(2µ) > −1, N ∈ Z�0. The independent variable t , whilst defined on the unit
circle |t | = 1, can be analytically continued into the cut complex t-plane.

It was shown in [15] that the average AN(t) is the N ∈ Z�0th member of a sequence
of classical τ -functions of the sixth Painlevé system. Thus this average is characterized by
solutions of the nonlinear differential equation (2.5) subject to the boundary conditions given
in [17], which were derived following an idea introduced in [16].

Theorem 3.1 [17]. For generic values of the parameters µ,ω, ω̄, subject to 2µ + 2ω1 /∈ Z,

�(2µ + 2ω1) > 0, the spectral average AN has the following expansion about t = 1:



12730 A V Kitaev and N S Witte

AN(t) =
N−1∏
k=0

k!(2µ + 2ω1 + k + 1)

(1 + k + µ + ω)(1 + k + µ + ω̄)

{
1 +

Nµ(ω̄ − ω)

2µ + 2ω1
(1 − t) + O((1 − t)2)

+
(−1)N+1

sin π(2µ + 2ω1)

(
ξ ∗ e−π i(µ−ω̄)

2i
+

sin π2µ sin π(µ + ω)

sin π(2µ + 2ω1)

)

× (1 + 2µ)(1 + 2ω1)(1 + µ + ω)(1 + µ + ω̄)

2(2µ + 2ω1 + 2)(2µ + 2ω1 + 1)(N)(−N − 2µ − 2ω1)
(1 − t)1+2µ+2ω1

× (1 + O(1 − t)) + O((1 − t)2+4µ+4ω1)

}
. (3.3)

The precise relationship between the spectrum singularity average AN(t) and the
isomonodromy theory of the sixth Painlevé system was first given in [17]. However because we
intend to apply the Kitaev theory [20], which treats the coalescence of the regular singularities
0, t of the PVI system under the transition limit t → 0, and the natural bulk scaling of AN(t)

is through the limit t → 1, the monodromy data of our application will have to be recast in a
suitable form.

Theorem 3.2 [17]. The spectrum singularity ensemble can be defined by the following
monodromy data. The formal monodromy exponents are

θ0 = N + 2µ, θt = −N − 2ω1, θ1 = −µ − ω, θ∞ = µ + ω̄, (3.4)

with the necessary classical condition θ0 − θt + θ1 − θ∞ ∈ 2Z. The relevant monodromy
invariant is

σ0t = 2µ + 2ω1. (3.5)

In this case, the associated monodromy coefficient is given by s0t = επŝ/2 under the limiting
process ε := σ0t + θ1 − θ∞ → 0, along with

ŝ sin π2ω1 sin π(µ + ω) = sin π2µ sin π(µ + ω)

sin π(2µ + 2ω1)
+ ξ ∗ e−π i(µ−ω̄)

2i
. (3.6)

All monodromy matrices are upper triangular

M0 =
(

e−π iθ0 m0

0 eπ iθ0

)
, (3.7)

Mt =
(

eπ iθt mt

0 e−π iθt

)
, (3.8)

M1 =
(

e−π iθ1 m1

0 eπ iθ1

)
, (3.9)

with upper triangular elements of the form

m0 = (−1)N 2ir
sin π2µ

sin2 π(2µ + 2ω1)

{
− r

ŝ
sin π(µ + ω̄) + sin π(2µ + 2ω1) sin π(µ + ω)

}
,

(3.10)

mt = (−1)N2ir
1

sin2 π(2µ + 2ω1)

{
r

ŝ
e−π i(2µ+2ω1) sin π2µ sin π(µ + ω̄)

+ sin π(2µ + 2ω1) sin π2ω1 sin π(µ + ω)

}
, (3.11)

m1 = −2ir e−π i(µ+ω̄) sin π(µ + ω), (3.12)

where r is a nonzero arbitrary constant.
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Proof. In [17], it was noted that the monodromy exponents could be given by any one of the
three sets

{θ0, θt , θ1, θ∞} =




N + 2µ,N + 2ω1, µ + ω,µ + ω̄

N,N + 2µ + 2ω1, µ − ω,µ − ω̄

N + µ + ω,N + µ + ω̄,−2µ, 2ω1,

(3.13)

modulo permutations of the exponents, an even number of sign reversals and subject to some
constraints which we elaborate later on. It was found that the first set led to upper triangular
monodromy matrices, the second to full monodromy matrices except for one which was a
multiple of the identity, and the third to lower triangular matrices. The second set strictly
violates the condition of non-resonant monodromy exponents, and the third set is essentially
equivalent to the first and therefore we choose an example from the first set. These constraints,
when applied to the first set, imply that our choices are now

{θ0, θt , θ1, θ∞} =




±(µ + ω),±(N + 2µ),±(N + 2ω1),±(µ + ω̄)

±(µ + ω̄),±(N + 2ω1),±(N + 2µ),±(µ + ω)

±(µ + ω),±(N + 2µ),±(N + 2ω1),±(µ + ω̄)

±(µ + ω̄),±(N + 2ω1),±(N + 2µ),±(µ + ω),

(3.14)

with an even number of sign reversals. The monodromy invariants were given as σ0t =
N − µ + ω̄, σt1 = 2µ + 2ω1, σ01 = N − µ + ω.

Next we employ the linear fractional transformation of our original system t 	→ 1 − t,

θ0 ↔ θ1, σ0t 	→ σt1, σt1 	→ σ0t , and it is this new system to which we shall refer to
henceforth. We take one choice from the above (3.14) which is applicable to the theory
given in [20] and this is (3.4) and (3.5). Having made this choice, we observe that in order
for the Jimbo parametrization given in (2.20) and (2.21) to be consistent with (3.3) under
the map t 	→ 1 − t, s0t must vanish in the manner given in theorem (3.2). The resulting
finite coefficient ŝ is then given by formula (3.6). It can be also verified that the overall
prefactors and the leading order analytic terms in both expansions agree precisely with the
choices we have made. The monodromy matrices are then given by (3.7)–(3.12) using the
parametrization in (2.14), (2.15), (2.16), (2.17). The off-diagonal elements satisfy the relation
e−π iθ0m0 + e−π iθt mt + e−π i(θ0+θt−θ∞)m1 = 0, as required by the cyclic identity (2.9). �

4. Isomonodromy deformation formulation for PV

The work of Jimbo [18] has a slightly different formulation of the isomonodromy problem
for PV from that of Kitaev and collaborators [1, 2, 20], and it is the latter form that we adopt.
We formulate the PV isomonodromic system as the Lax pair of linear 2 × 2 matrix ODEs
for �(λ; t) with two regular singular points at ν = 0, 1 and an irregular one at ∞ with the
Poincare rank unity

d

dλ
� =

(
t

2
σ3 +

A0

λ
+

A1

λ − 1

)
�,

d

dt
� =

{
λ

2
σ3 +

1

t

(
θ∞
2

σ3 + A0 + A1

)}
�. (4.1)

We require that the residue matrices satisfy diag(A0 + A1) = − θ∞
2 σ3, θ∞ ∈ C\Z, and the

constraints tr Aν = 0, det Aν = − 1
4θ2

ν , ν ∈ {0, 1}. Again we assume that there exist invertible
matrices Rν ∈ SL(2, C) such that R−1

ν AνRν = 1
2θνσ3, θν ∈ C\Z, ν ∈ {0, 1}.

Within the works of Kitaev and collaborators there are two different conventions for the
monodromy data employed, and we will make the distinction between the two by using a
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carét for those of [20] as opposed to those of [1, 2]. In the neighbourhood of the irregular
singularity, the canonical solutions �k(λ) can be expanded as

�k(λ) ∼
(

I +
∞∑

m=1

�k
m∞λ−m

)
exp

{(
t

2
λ − 1

2
θ∞ log λ

)
σ3

}
(4.2)

in the sectors −3π/2 +πk < arg λt < π/2 +πk, k = 1, 2. The Stokes matrices Sk are defined
as �k+1(λ) = �k(λ)Ŝk , which have the structure

Ŝ2l =
(

1 0
ŝ2l 1

)
, Ŝ2l+1 =

(
1 ŝ2l+1

0 1

)
, (4.3)

where ŝk are the Stokes multipliers. The monodromy matrix M̂k∞ is given by M̂k∞ =
ŜkŜk+1 eπ iθ∞σ3 , C∞ = I , and we set M̂∞ = M̂0∞. The monodromy matrices at the regular
singularities are defined in the same way as in (2.8). The cyclic relation in this case is

M̂0M̂1M̂∞ = I, (4.4)

reversed in order from the usual convention because of the nature of the limiting transition we
are to consider later. The monodromy data preserved here are MV := {θν, Cν, M̂ν, ŝ1, ŝ2}.
If we define the monodromy invariant 2 cos πσ = Tr(M̂0M̂1), then the following constraint,
analogous to (2.19), applies:

ŝ0ŝ1 e−π iθ∞ = 4 sin
π

2
(θ∞ + σ) sin

π

2
(θ∞ − σ). (4.5)

In contrast, the cyclic relation adopted in [1, 2] is

M∞M1M0 = I, (4.6)

where

M∞ ≡ M2∞ = S2 eπ iθ∞σ3S1. (4.7)

The inter-relationship between the two sets of monodromy data is given by

Ŝ0 = S1, Ŝ1 = S2 (4.8)

M̂0 = S1M1M0M
−1
1 S−1

1 , M̂1 = S1M1S
−1
1 , M̂∞ = S1M∞S−1

1 . (4.9)

The σ -function in the Jimbo formulation of the PV linear system is equivalent to that of
Andreev and Kitaev [2] and is defined as

ζ(t) = t
d

dt
log τ +

1

2
(θ0 + θ∞)t +

1

4

[
(θ0 + θ∞)2 − θ2

1

]
, (4.10)

which satisfies the second-order second-degree differential equation(
t

d2

dt2
ζ

)2

=
[
ζ − t

d

dt
ζ + 2

(
d

dt
ζ

)2

− (2θ0 + θ∞)
d

dt
ζ

]2

− 4
d

dt
ζ

(
d

dt
ζ − θ0

)(
d

dt
ζ − 1

2
(θ0 − θ1 + θ∞)

) (
d

dt
ζ − 1

2
(θ0 + θ1 + θ∞)

)
.

(4.11)

The asymptotic expansion of the τ -function is given by the following theorem.



Boundary conditions for scaled random matrix ensembles 12733

Theorem 4.1 [18]. Under the conditions θ0, θ1 /∈ Z, 0 < �(σ ) < 1 and θ1 ± θ0 ± σ, θ∞ ±
σ /∈ 2Z, then we have the asymptotic expansion of the τ -function as t → 0:

τ(t) ∼ const · t (σ
2−θ2

∞)/4

{
1 − θ∞

(
θ2

1 − θ2
0 + σ 2

)
4σ 2

t − ŝ
[θ∞ − σ ]

[
θ2

0 − (θ1 − σ)2
]

8σ 2(1 + σ)2
t1+σ

− ŝ−1 [θ∞ + σ ]
[
θ2

0 − (θ1 + σ)2
]

8σ 2(1 − σ)2
t1−σ + O(|t |2(1−�(σ )))

}
, (4.12)

where σ �= 0 and ŝ are related to s through

ŝ = s
2(1 − σ)

(
1 + 1

2 (θ1 + θ0 + σ)
)


(
1 + 1

2 (θ1 − θ0 + σ)
)

2(1 + σ)
(
1 + 1

2 (θ1 + θ0 − σ)
)


(
1 + 1

2 (θ1 − θ0 − σ)
) 

(
1 + 1

2 (θ∞ + σ)
)


(
1 + 1

2 (θ∞ − σ)
) . (4.13)

When σ �= Z we have the parametrization of the PV monodromy matrices employed in
[18], and in theorem 6.2 of [2]

DM0D
−1 = 1

i sin πσ

×
(

eπ iσ cos πθ0 − cos πθ1 −2rse−π iσ sin π
2 (θ1 − θ0 − σ) sin π

2 (θ1 + θ0 − σ)

2(rs)−1eπ iσ sin π
2 (θ1 − θ0 + σ) sin π

2 (θ1 + θ0 + σ) −e−π iσ cos πθ0 + cos πθ1

)
,

(4.14)

DM1D
−1 = 1

i sin πσ

×
(

eπ iσ cos πθ1 − cos πθ0 2rs sin π
2 (θ1 − θ0 − σ) sin π

2 (θ0 + θ1 − σ)

−2(rs)−1 sin π
2 (θ1 − θ0 + σ) sin π

2 (θ0 + θ1 + σ) −e−π iσ cos πθ1 + cos πθ0

)
,

(4.15)

where

D =
(

e−π iσ/2 r sin π
2 (θ∞ + σ)

r−1 eπ iσ/2 sin π
2 (θ∞ − σ)

)
. (4.16)

The Stokes multipliers are given by the formulae

s1 = − 2π ir−1


(
1 − σ−θ∞

2

)


(
σ+θ∞

2

) , s2 = −eπ iθ∞ 2π ir


(
1 − σ+θ∞

2

)


(
σ−θ∞

2

) . (4.17)

The parameter r is again an arbitrary nonzero complex constant and does not appear in the
expansion formulae.

5. The bulk scaling ensemble

Also studied in [15] was the scaling limit of the spectrum singularity ensemble in the
neighbourhood of the singularity at φ = 0 (t = 1), to the bulk regime via the limit N → ∞.
It was shown there that the log derivative of the average AN(t) converged to a solution of
the Jimbo–Miwa–Okamoto σ -function for the fifth Painlevé equation. Thus the most general
universality class of Hermitian random matrix ensembles in the bulk scaling limit was found
to be a generic four parameter class—three arbitrary parameters, ω1, ω2, µ, appearing in the
differential equation and one, ξ ∗, in the boundary data. Thus this class is characterized by a
transcendental solution to a generic fifth Painlevé equation.

The establishment of this result was based on a formal scaling limit of the PVI second-
order second-degree ordinary differential equation (2.5) to the corresponding PV ODE (4.11).
Defining the scaling variables

t := e−x/N , u(x;ω1, ω2, µ; ξ ∗) := x
d

dx
lim

N→∞
logAN(t;ω1, ω2, µ; ξ ∗), (5.1)
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it was found that u(x) is related to a solution of an alternative Jimbo–Miwa–Okamoto σ -form
of the fifth Painlevé equation hV(s) by

u(ix;ω1, ω2, µ) = hV(x; v) +
(− 1

4ω − 3
4 ω̄ + µ

)
x + 1

8 (ω − ω̄)2 − µ(ω + ω̄), (5.2)

with the Okamoto parameters

(v1, v2, v3, v4) = (
ω1 − 1

2 iω2,−ω1 − 1
2 iω2, µ + 1

2 iω2,−µ + 1
2 iω2

)
. (5.3)

The alternative Jimbo–Miwa–Okamoto σ -form of the fifth Painlevé equation (4.11) is

(xh′′
V)2 − [hV − xh′

V + 2(h′
V)2]2 + 4

4∏
k=1

(h′
V + vk) = 0, (5.4)

where the constraint v1 + v2 + v3 + v4 = 0 applies. The scaled spectral average is a τ -function
for this system and related to u(x) by

A(x) = exp
∫ x

0

dy

y
u(y;ω1, ω2, µ). (5.5)

We have the following expansion of A(x) about x = 0 under the above formal bulk
scaling limit.

Theorem 5.1. Under the conditions �(2µ),�(2ω1),�(µ + ω),�(µ + ω̄) > −1, 0 �
�(2µ + 2ω1) < 1, the spectral average AN(t;ω1, ω2, µ; ξ ∗) has a bulk scaling limit with
t 	→ exp(−x/N) as N → ∞,

N−1∏
k=0

(1 + k + µ + ω)(1 + k + µ + ω̄)

k!(2µ + 2ω1 + k + 1)
AN(t;ω1, ω2, µ; ξ ∗) ∼

N→∞
A(x), (5.6)

and the scaled A-function has the following expansion as x → 0:

A(x) = 1 +
µ(ω̄ − ω)

2µ + 2ω1
x + O(x2) +

1

π

(
ξ ∗ e−π i(µ−ω̄)

2i
+

sin π2µ sin π(µ + ω)

sin π(2µ + 2ω1)

)

× (1 + 2µ)(1 + 2ω1)(1 + µ + ω)(1 + µ + ω̄)

2(2µ + 2ω1 + 2)(2µ + 2ω1 + 1)
x1+2µ+2ω1(1 + O(x))

+ O(x2+4µ+4ω1). (5.7)

Proof. Expansion (3.3) is valid uniformly in N under the substitution t 	→ exp(−x/N) and
by taking the limit N → ∞, and employing the asymptotic formula for the ratio of gamma
functions we arrive at (5.7). �

Comparison of this result with the general theorem 4.1 of Jimbo leads to the following
conclusions.

Theorem 5.2. The PV monodromy parameters for the bulk scaled spectrum singularity
ensemble are

θ0 = µ + ω̄, θ1 = −µ − ω, θ∞ = 2µ − 2ω1, (5.8)

with the invariant σ = 2µ + 2ω1. The monodromy coefficient is

s = − sin π2µ

sin π2ω1
− sin π(2µ + 2ω1)

sin π2ω1 sin π(µ + ω)
ξ ∗ e−π i(µ−ω̄)

2i
. (5.9)
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Proof. The identification of (5.4) with the parameter set (5.3) with (4.11) leads to the
following solution sets for the PV formal monodromy exponents:{

1
2θ0 + 1

4θ∞,− 1
2θ0 + 1

4θ∞, 1
2θ1 − 1

4θ∞,− 1
2θ1 − 1

4θ∞
}

= {
µ − 1

2 iω2,−µ − 1
2 iω2, ω − 1

2 iω2,−ω̄ − 1
2 iω2

}
, (5.10)

modulo permutations. One choice, consistent with subsequent calculations, is given in (5.8).
Using this choice and comparing the two asymptotic expansions (5.7) and (4.12) through their
relationship

A(x) = C e
1
4 (θ∞−ω+ω̄)xx

1
4 [(θ0+θ∞)2−θ2

1 ]− 1
2 (θ0+ 1

2 θ∞)2−2µω1+ 1
8 (ω−ω̄)2

τ(x), (5.11)

we see that σ 2 = (2µ+2ω1)
2 from consideration of the algebraic prefactor. The coefficients of

the analytic terms then agree upon using this value for the exponent. Finally, the coefficient of
the non-analytic x1−σ vanishes because θ0 − θ1 − σ = 0 and (5.9) follows from a matching
of the remaining term. �

6. The limit transition PVI to PV

The limit transition from PVI to PV is from one monodromy preserving system to another,
and it is known [6] that there exists no continuous transition between such systems which is
itself monodromy preserving. However, there are discrete transitions which are monodromy
preserving and one example is a sequence of even parity Schlesinger transformations of the
PVI system, i.e. θν 	→ θν + 2n, n ∈ Z

+. In a sense the PV system arises then as a fixed point
of this map, although the deformation variable also must scale in an appropriate way. This
approach was fundamental to the study of Kitaev [20] who considered an example which is
relevant to the present work. By way of comparison with our theorem 5.1, let us now consider
the formal scaling undertaken in limit II of PVI as given in [20]. In this limit, the PVI formal
exponents of monodromy are related to the PV exponents by

θtVI = θ6 − 2n =: −1

ε
, (6.1)

θ0VI = θ∞V − θ6 + 2n = θ∞V +
1

ε
, (6.2)

θ1VI = θ1V, (6.3)

θ∞VI = θ0V, (6.4)

and the limit n → ∞ or ε → 0 is taken. The quantity θ6 is an additional constant which
will be fixed in our application. The two regular singularities ν = 0, t coalesce through
tVI = εtV = O(ε), and the transition from the linear PVI system to the PV system takes place
according to the scheme displayed in figure 2.

At the level of the PVI isomonodromic system, the following scaling takes place as
n → ∞, ε → 0:

λVI = 1

λV
, (6.5)

tVI = εtV, (6.6)

lim
ε→0

R−1
tVI�VI(tVI, λVI) = �V(tV, λV), (6.7)
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Figure 2. Coalescence of the two regular singularities 0, t of the PVI system into the irregular
singularity at ∞ of a PV system according to the limit transition II of [20].

R−1
tVI

1

2
θ∞VIσ3RtVI = A0V + O(ε), (6.8)

R−1
tVIA1VIRtVI = A1V + O(ε), (6.9)

−R−1
tVI

d

dtV
RtVI = 1

tV

(
1

2
θ∞Vσ3 + A0V + A1V

)
+ O(ε). (6.10)

Consequently theorem 2 of Kitaev [20] allows us to compute the PV monodromy data
under the limit transition II described above.

Theorem 6.1 [20]. Let µVI ∈ MVI(θ∞V − θ6, θ1VI, θ6, θ∞VI) and suppose the following
conditions hold:

(1) (6.1), (6.2) and θνVI ∈ C\Z;
(2) (MtVI − e−π iθ6)(M0VI − e−π i(θ∞V−θ6)) �= 0;
(3) α, β, l ∈ C\Z, where

T = Tr(MtVI − eπ iθ6)(M0VI − e−π i(θ∞V−θ6)), (6.11)

l = 1

π i
log


cos πθ∞V +

1

2
T ±

√(
cos πθ∞V +

1

2
T

)2

− 1


 , (6.12)

α = −1

2
(θ∞V − l), β = −1

2
(θ∞V + l); (6.13)

(4) the inverse monodromy problem for (2.1) is solvable for all pairs (µVI, tVI) such that
tVI = εtV > 0, and

(5) it is possible to construct the sequence A2n
νVI(εtV), n ∈ Z

+.
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Then the data µV ∈ MV(θ0V, θ1V, θ∞V) are given by the formulae

θ0V = θ∞VI, θ1V = θ1VI, (6.14)

Ŝ0 =
(

1 0
2π i

(1−α)(1−β)
1

)
, Ŝ1 =

(
1 − 2π i

(α)(β)
eπ iθ∞V

0 1

)
, (6.15)

M̂0V = KM∞VIK
−1, M̂1V = KM1VIK

−1, (6.16)

where K is the unique (up to a sign) solution of the system

KMtVIK
−1 = Ŝ0 eπ iθ6σ3 , KM0VIK

−1 = e−π iθ6σ3 Ŝ1 eπ iθ∞Vσ3 . (6.17)

Applying the above theorem to the spectrum singularity ensemble we have the following
result.

Corollary 6.1. In the limit transition of theorem (6.1), we find that the Painlevé V parameters
of the spectrum singularity ensemble are

θ0V = µ + ω̄, θ1V = −µ − ω, θ∞V = 2µ − 2ω1, θ6 = −2ω1. (6.18)

The Stokes multipliers are

ŝ0 = 2π i

(1 − 2ω1)(1 + 2µ)
, ŝ1 = − 2π i eπ i(2µ−2ω1)

(2ω1)(−2µ)
. (6.19)

The monodromy matrices are

M̂0V =
(

eπ i(µ+ω̄)(1 − ξ ∗) − eπ i(µ−ω̄)2i sin π2µ − (1 + 2µ)
(2ω1)

eiπ(2µ+2ω1)
[
e−π i(µ+ω̄)2i sin π2µ + eπ i(−µ+ω̄)ξ ∗]

(2ω1)
(1 + 2µ)

eπ i(2µ−2ω1)
[
2i sin π(µ − ω̄) + eπ i(−µ+ω̄)ξ ∗] eπ i(3µ−ω̄) + eπ i(µ+ω̄)ξ ∗

)
,

(6.20)

M̂1V =
(

eπ i(µ+ω) + e−π i(µ+ω)ξ ∗ (1+2µ)

(2ω1)
eπ i(−µ+ω̄)ξ ∗

− (2ω1)

(1+2µ)
e−π i2ω1 [2i sin π(µ + ω) + e−π i(µ+ω)ξ ∗] e−π i(µ+ω)(1 − ξ ∗)

)
,

(6.21)

M̂∞V =
(

eπ i(2µ−2ω1) − 2π i
(−2µ)(2ω1)

2π i
(1+2µ)(1−2ω1)

eπ i(2µ−2ω1) 2 cos π(2µ + 2ω1) − eπ i(2µ−2ω1)

)
. (6.22)

Proof. The set of PVI parameters (3.4) in our application implies that the limiting PV

parameters are θ6 = −2ω1, θ0V = µ + ω̄, θ1V = −µ − ω, θ∞V = 2µ − 2ω1, which are
consistent with those of (5.8). Using the structure of the PVI monodromy matrices (3.7) and
(3.8), we compute that α = −θ∞V + θ6 and β = −θ6, which fixes the Stokes multipliers as
given by (6.19). We solve system (6.17) which yields the solution

K = K1,1

(
1 −i mtVI

2 sin πθ6

2i
ŝ1

eπ i(θ∞V+θ6) sin π(−θ∞V + θ6)
eπ i(θ∞V+θ6)mtVI

ŝ1

)
, (6.23)

for an arbitrary nonzero K1,1. Finally, we employ these findings in (6.16) and after lengthy
calculations arrive at explicit forms for the monodromy matrices (6.20)–(6.22). �
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However, the explicit parametrization of the alternative PV monodromy matrices (4.14),
(4.15) allows us to compute these directly from the data deduced from the expansion of the
τ -function about x = 0, as given by theorems 5.1 and 5.2.

Corollary 6.2 [2, 18]. In terms of the other set of monodromy data {M0V,M1V,M∞V}, we
have

M0V =
(

eπ i(−3µ+ω̄)(1 − ξ ∗) −(1 + 2µ)
(2ω1)

eπ i(−µ−ω)
[
2i sin π2µ + e−π i2µξ ∗]

(2ω1)
(1 + 2µ)

eπ i(−2µ+2ω1)
[
2i sin π(µ − ω̄) + eπ i(−µ+ω̄)ξ ∗] 2 cos π(µ + ω̄) − eπ i(−3µ+ω̄)(1 − ξ ∗)

)
,

(6.24)

and

M1V =
(

eπ i(µ+ω) + eπ i(2ω1−µ+ω̄)ξ ∗ (1+2µ)

(2ω1)
eπ i(−µ+ω̄)ξ ∗

− (2ω1)

(1+2µ)
eπ i2ω1 [2i sin π(µ + ω) + eπ i(2ω1−µ+ω̄)ξ ∗] eπ i(−µ−ω) − eπ i(2ω1−µ+ω̄)ξ ∗

)
,

(6.25)

and

M∞V =
(

2 cos π(2µ + 2ω1) − e−π i(2µ−2ω1) − 2π i
(−2µ)(2ω1)

2π i
(1+2µ)(1−2ω1)

e−π i(2µ−2ω1) e−π i(2µ−2ω1)

)
. (6.26)

Proof. The first two matrices are computed from (4.14) and (4.15) after noting that a
comparison of the Stokes multipliers (4.17) and (6.19) obliges us to set r = −2µ. The
third matrix is computed using (4.7). As a check, one can verify directly that both sets
of monodromy matrices (6.20)–(6.22) and (6.24)–(6.26) are related by the transformations
of (4.9). �

In the discussion of the asymptotics of the PV σ -function as t → ±∞ given in [2] the
following parameter

β0 = 1

2π i
ln{ξ ∗[1 − eπ i(−2µ+2ω1)(1 − ξ ∗)]} (6.27)

was found to be crucial. We note that when ξ ∗ = 1, both β0 and the upper left element of M0

vanish. A comparison of our monodromy matrices, evaluated at ξ ∗ = 1, with those discussed
in [1] where a solution to one of the connection problems was reported reveals that our case
is precisely the case of the lower truncated solution. In terms of the parameters used in that
work we have

iû = 22(2µ−2ω1) e−π i(µ−ω̄) (1 + 2µ)

(2ω1)
, (6.28)

iv̂ =
√

2

π
eπ i(µ+ω1) cos π(µ − ω̄). (6.29)

This means that the σ -function has the following asymptotic expansion:

ζ(s) ∼
s→−i∞ ζ0(s) − i eπ i(µ+ω1) cos π(µ − ω̄)

√
|s|
4π

e−is/2 (6.30)

in the sector −π � arg(s) � 0. Here ζ0(s) is the formal, algebraic expansion

ζ0(s) ∼
|s|→∞

s2

16
+

(
µ − 1

2
iω2

)
s + 4µ2 − 2µiω2 + ω2

1 + ω2
2 − 1

4

− 2iω2
(
4µ2 − 4ω2

1

)
s−1 +

[
16µ4 − 8

(
4
(
ω2

1 + ω2
2

)
+ 1

)
µ2 − 16ω2

1ω
2
2

+
(
4ω2

1 − 1
)(

4ω2
1 − 4ω2

2 − 1
)]

s−2 + O(s−3). (6.31)

However, this is not the physically interesting asymptotic expansion of s → +i∞.
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7. Conclusions

An especially interesting problem that remains outstanding is the connection formula relating
the x → 0 behaviour of the PV τ -function arising in the bulk scaling of the spectrum singularity
ensemble A(x), as given in (5.7), to the x → +i∞ behaviour. The bulk scaling limit of the
partition function for the Dyson CUE (3.1) is the generating function for the gap probability,
which has the Fredholm determinant formula

E((−t, t); ξ) = det(I − ξK|L2(−t,t)), (7.1)

where the integral operator K has a kernel with the sine kernel form

K(x, y) = sin π(x − y)

π(x − y)
. (7.2)

This is a special case of our spectral average A(x) and the precise relation is

E((−t, t); ξ) = A(4it;µ = 0, ω1 = 0, ω2 = 0; ξ). (7.3)

The large t → ∞ asymptotic expansion of the gap probability E((−t, t); ξ = 1) is known to
be

E((−t, t); ξ = 1) ∼ e3ζ ′(−1)+ 1
12 log 2t−1/4 e− 1

2 t2+o(1), (7.4)

or alternatively as

t
d

dt
log E((−t, t); ξ = 1) ∼ −t2 − 1

4
− 1

16t2
− 5

32t4
+ · · · . (7.5)

For 0 < ξ < 1, this result becomes

t
d

dt
log E((−t, t); ξ) ∼ 2t

π
log(1 − ξ) +

log2(1 − ξ)

2π2
+ o(1). (7.6)

This asymptotic problem has been the subject of intense and continuing study [3, 4, 7–11,
21, 22]. The question we pose then is: what is the generalization of this asymptotic result
valid for generic ω1, ω2, µ and that is uniformly valid for |1 − ξ | < δ with some finite δ > 0?

Our results do not strictly apply for the situation of moments or singularities that are
negative �(µ),�(ω1) < −1/2 and |t | → 1, however the present results may carry over to
this case. This case is quite relevant in the context of studies concerning the averages of the
characteristic polynomial in the CUE with negative integer powers [12] where such averages
are employed to make conjectures concerning the averages of powers of the zeta or L-functions
on their critical lines.
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